Back to Search Start Over

Isolation and Characterization of Erianthus arundinaceus Phosphate Transporter 1 (PHT1) Gene Promoter and 5' Deletion Analysis of Transcriptional Regulation Regions under Phosphate Stress in Transgenic Tobacco.

Authors :
Naveenarani M
Swamy HKM
Surya Krishna S
Mahadevaiah C
Valarmathi R
Manickavasagam M
Arun M
Hemaprabha G
Appunu C
Source :
Plants (Basel, Switzerland) [Plants (Basel)] 2023 Nov 03; Vol. 12 (21). Date of Electronic Publication: 2023 Nov 03.
Publication Year :
2023

Abstract

Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71-96% similarity with Arabidopsis thaliana , Zea mays , and the Saccharum hybrid. To elucidate the function of the 5' regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a β-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5' deletion analysis with and without 5' UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5' truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops.

Details

Language :
English
ISSN :
2223-7747
Volume :
12
Issue :
21
Database :
MEDLINE
Journal :
Plants (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
37960116
Full Text :
https://doi.org/10.3390/plants12213760