Back to Search Start Over

Conformation-dependent lesion bypass of bulky arylamine-dG adducts generated from 2-nitrofluorene in epigenetic sequence contexts.

Authors :
Crisalli AM
Chen YT
Cai A
Li D
Cho BP
Source :
Nucleic acids research [Nucleic Acids Res] 2023 Dec 11; Vol. 51 (22), pp. 12043-12053.
Publication Year :
2023

Abstract

Sequence context influences structural characteristics and repair of DNA adducts, but there is limited information on how epigenetic modulation affects conformational heterogeneity and bypass of DNA lesions. Lesions derived from the environmental pollutant 2-nitrofluorene have been extensively studied as chemical carcinogenesis models; they adopt a sequence-dependent mix of two significant conformers: major groove binding (B) and base-displaced stacked (S). We report a conformation-dependent bypass of the N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (dG-FAF) lesion in epigenetic sequence contexts (d[5'-CTTCTC#G*NCCTCATTC-3'], where C# is C or 5-methylcytosine (5mC), G* is G or G-FAF, and N is A, T, C or G). FAF-modified sequences with a 3' flanking pyrimidine were better bypassed when the 5' base was 5mC, whereas sequences with a 3' purine exhibited the opposite effect. The conformational basis behind these variations differed; for -CG*C- and -CG*T-, bypass appeared to be inversely correlated with population of the duplex-destabilizing S conformer. On the other hand, the connection between conformation and a decrease in bypass for flanking purines in the 5mC sequences relative to C was more complex. It could be related to the emergence of a disruptive non-S/B conformation. The present work provides novel conformational insight into how 5mC influences the bypass efficiency of bulky DNA damage.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
51
Issue :
22
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
37953358
Full Text :
https://doi.org/10.1093/nar/gkad1038