Back to Search Start Over

A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples.

Authors :
Hou W
Ji Z
Chen Z
Wherry EJ
Hicks SC
Ji H
Source :
Nature communications [Nat Commun] 2023 Nov 10; Vol. 14 (1), pp. 7286. Date of Electronic Publication: 2023 Nov 10.
Publication Year :
2023

Abstract

Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene regulatory programs along continuous biological processes. While many methods have been developed to infer the pseudotemporal trajectories of cells within a biological sample, it remains a challenge to compare pseudotemporal patterns with multiple samples (or replicates) across different experimental conditions. Here, we introduce Lamian, a comprehensive and statistically-rigorous computational framework for differential multi-sample pseudotime analysis. Lamian can be used to identify changes in a biological process associated with sample covariates, such as different biological conditions while adjusting for batch effects, and to detect changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially reduces sample-specific false discoveries that are not generalizable to new samples. Using both real scRNA-seq and simulation data, including an analysis of differential immune response programs between COVID-19 patients with different disease severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous biological processes.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
37949861
Full Text :
https://doi.org/10.1038/s41467-023-42841-y