Back to Search Start Over

Peptide Amphiphiles as Biodegradable Adjuvants for Efficient Retroviral Gene Delivery.

Authors :
Kaygisiz K
Rauch-Wirth L
Iscen A
Hartenfels J
Kremer K
Münch J
Synatschke CV
Weil T
Source :
Advanced healthcare materials [Adv Healthc Mater] 2024 Feb; Vol. 13 (4), pp. e2301364. Date of Electronic Publication: 2023 Nov 23.
Publication Year :
2024

Abstract

Retroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion-cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post-transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form β-sheet-rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block-type amphiphilic sequence arrangement in the PAs ensures efficient cell-virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril-fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.<br /> (© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
2192-2659
Volume :
13
Issue :
4
Database :
MEDLINE
Journal :
Advanced healthcare materials
Publication Type :
Academic Journal
Accession number :
37947246
Full Text :
https://doi.org/10.1002/adhm.202301364