Back to Search Start Over

Short-term All-cause In-hospital Mortality Prediction by Machine Learning Using Numeric Laboratory Results.

Authors :
Shimada G
Nakabayashi R
Komatsu Y
Source :
JMA journal [JMA J] 2023 Oct 16; Vol. 6 (4), pp. 470-480. Date of Electronic Publication: 2023 Sep 29.
Publication Year :
2023

Abstract

Introduction: A critical value (or panic value) is a laboratory test result that significantly deviates from the normal value and represents a potentially life-threatening condition requiring immediate action. Although notification of critical values by critical value list (CVL) is a well-established method, their contribution to mortality prediction is unclear.<br />Methods: A total of 335,430 clinical laboratory results from 92,673 patients from July 2018 to December 2019 were used. Data in the first 12 months were divided into two datasets at a ratio of 70:30, and a 7-day mortality prediction model by machine learning (eXtreme Gradient Boosting [XGB] decision tree) was created using stratified random undersampling data of the 70% dataset. Mortality predictions by the CVL and XGB model were validated using the remaining 30% of the data, as well as different 6-month datasets from July to December 2019.<br />Results: The true results which were the sum of correct predictions by the XGB model and CVL using the remaining 30% data were 61,535 and 61,024 tests, and the false results which were the sum of incorrect predictions were 5,492 and 6,003, respectively. Furthermore, the true results with the different datasets were 105,956 and 102,061 tests, and the false results were 6,052 and 9,947, respectively. The XGB model was significantly better than CVL ( p < 0.001) in both datasets.The receiver operating characteristic-area under the curve values for the 30% and validation data by XGB were 0.9807 and 0.9646, respectively, which were significantly higher than those by CVL (0.7549 and 0.7172, respectively).<br />Conclusions: Mortality prediction within 7 days by machine learning using numeric laboratory results was significantly better than that by conventional CVL. The results indicate that machine learning enables timely notification to healthcare providers and may be safer than prediction by conventional CVL.<br />Competing Interests: None<br /> (Copyright © Japan Medical Association.)

Details

Language :
English
ISSN :
2433-3298
Volume :
6
Issue :
4
Database :
MEDLINE
Journal :
JMA journal
Publication Type :
Academic Journal
Accession number :
37941686
Full Text :
https://doi.org/10.31662/jmaj.2022-0206