Back to Search Start Over

Biomimetic nanoparticles of platelet membranes carrying bFGF and VEGFA genes promote deep burn wound healing.

Authors :
Wang B
Chen J
Zhang C
Zhang Q
Zhu Z
Qiu L
Yan J
Li Z
Zhu X
Zhang Y
Jiang Y
Source :
International immunopharmacology [Int Immunopharmacol] 2023 Dec; Vol. 125 (Pt A), pp. 111164. Date of Electronic Publication: 2023 Nov 04.
Publication Year :
2023

Abstract

Introduction: The treatment of burn wounds, especially deep burn wounds, remains a major clinical challenge. Growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) show great potential in promoting the healing of damaged tissues. This study explored wound healing following targeted delivery of bFGF and VEGFA genes into deep burn wounds through a novel platelet membrane-coated nanoparticle (PM@gene-NP) complex delivery system.<br />Methods: First, bFGF and VEGFA genes were inserted into plasmid (pEGFP-N1) vectors. Subsequently, the assembled plasmids were loaded onto nanoparticles to form gene-loaded nanoparticle complexes, which were then wrapped with extracted platelet membrane, fully simulating the characteristics of platelets, in order to actively target sites of inflammatory damage. After administration of PM@gene-NP complexes through the tail vein of rats, a series of experiments were conducted to evaluate wound healing.<br />Results: The PM@gene-NP complexes effectively targeted the burn sites. After the administration of the PM@gene-NP complexes, the rats exhibited increased blood flow in the burn wounds, which also healed faster than control groups. Histological results showed fewer inflammatory cells in the burned skin tissue after treatment. After the wounds healed, the production of hair follicles, sebaceous glands and other skin accessories in the skin tissue increased.<br />Conclusion: Our results showed that the PM@gene-NP complexes can effectively deliver gene therapy to the injured area, and this delivery system should be considered as a potential method for treating deep burns.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1878-1705
Volume :
125
Issue :
Pt A
Database :
MEDLINE
Journal :
International immunopharmacology
Publication Type :
Academic Journal
Accession number :
37925947
Full Text :
https://doi.org/10.1016/j.intimp.2023.111164