Back to Search
Start Over
Humor appreciation can be predicted with machine learning techniques.
- Source :
-
Scientific reports [Sci Rep] 2023 Nov 03; Vol. 13 (1), pp. 19035. Date of Electronic Publication: 2023 Nov 03. - Publication Year :
- 2023
-
Abstract
- Humor research is supposed to predict whether something is funny. According to its theories and observations, amusement should be predictable based on a wide variety of variables. We test the practical value of humor appreciation research in terms of prediction accuracy. We find that machine learning methods (boosted decision trees) can indeed predict humor appreciation with an accuracy close to its theoretical ceiling. However, individual demographic and psychological variables, while replicating previous statistical findings, offer only negligible gains in accuracy. Successful predictions require previous ratings by the same rater, unless highly specific interactions between rater and joke content can be assessed. We discuss implications for humor research, and offer advice for practitioners designing content recommendations engines or entertainment platforms, as well as other research fields aiming to review their practical usefulness.<br /> (© 2023. The Author(s).)
- Subjects :
- Humans
Wit and Humor as Topic
Leisure Activities
Machine Learning
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 13
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 37923840
- Full Text :
- https://doi.org/10.1038/s41598-023-45935-1