Back to Search
Start Over
A Comparative Analysis of Radical Scavenging, Antifungal and Enzyme Inhibition Activity of 3'-8″-Biflavones and Their Monomeric Subunits.
- Source :
-
Antioxidants (Basel, Switzerland) [Antioxidants (Basel)] 2023 Oct 12; Vol. 12 (10). Date of Electronic Publication: 2023 Oct 12. - Publication Year :
- 2023
-
Abstract
- Biflavonoids are dimeric forms of flavonoids that have recently gained importance as an effective new scaffold for drug discovery. In particular, 3'-8″-biflavones exhibit antiviral and antimicrobial activity and are promising molecules for the treatment of neurodegenerative and metabolic diseases as well as cancer therapies. In the present study, we directly compared 3'-8″-biflavones (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) and their monomeric subunits (apigenin, genkwanin, and acacetin) and evaluated their radical scavenging activity (with DPPH), antifungal activity against mycotoxigenic fungi ( Alternaria alternata , Aspergillus flavus , Aspergillus ochraceus , Fusarium graminearum , and Fusarium verticillioides ), and inhibitory activity on enzymes (acetylcholinesterase, tyrosinase, α-amylase, and α-glucosidase). All the tested compounds showed weak radical scavenging activity, while antifungal activity strongly depended on the tested concentration and fungal species. Biflavonoids, especially ginkgetin and isoginkgetin, proved to be potent acetylcholinesterase inhibitors, whereas monomeric flavonoids showed higher tyrosinase inhibitory activity than the tested 3'-8″-biflavones. Amentoflavone proved to be a potent α-amylase and α-glucosidase inhibitor, and in general, 3'-8″-biflavones showed a stronger inhibitory potential on these enzymes than their monomeric subunits. Thus, we can conclude that 3'-8″-dimerization enhanced acetylcholinesterase, α-amylase, and α-glucosidase activities, but the activity also depends on the number of hydroxyl and methoxy groups in the structure of the compound.
Details
- Language :
- English
- ISSN :
- 2076-3921
- Volume :
- 12
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Antioxidants (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 37891933
- Full Text :
- https://doi.org/10.3390/antiox12101854