Back to Search
Start Over
Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer.
- Source :
-
Bioorganic chemistry [Bioorg Chem] 2024 Jan; Vol. 142, pp. 106936. Date of Electronic Publication: 2023 Oct 24. - Publication Year :
- 2024
-
Abstract
- A novel series of ethylidenehydrazineylthiazol-4(5H)-ones were synthesized using various eco-friendly one-pot multicomponent synthetic techniques. The anticancer activity of compounds (4a-m) was tested against 11 cancer cell lines. While the IC <subscript>50</subscript> of all compounds was evaluated against the most sensitive cell lines (MDA-MB-468 and FaDu). Our SAR study pinpointed that compound 4a, having a phenyl substituent, exhibited a significant growth inhibition % against all cancer cell lines. The frontier anticancer candidates against the MDA-MB-468 were also examined against the wild EGFR (EGFR-WT) and mutant EGFR (EGFR-T790M) receptors. Most of the synthesized compounds exhibited a higher inhibitory potential against EGFR-T790M than the wild type of EGFR. Remarkably, compound 4k exhibited the highest inhibitory activity against both EGFR-WT and EGFR-T790M with IC <subscript>50</subscript> values (0.051 and 0.021 µM), respectively. The pro-apoptotic protein markers (p53, BAX, caspase 3, caspase 6, caspase 8, and caspase 9) and the anti-apoptotic key marker (BCL-2) were also measured to propose a mechanism of action for the compound 4k as an apoptotic inducer for MDA-MB-468. Investigation of the cell cycle arrest potential of compound 4k was also conducted on MDA-MB-468 cancer cells. We also evaluated the inhibitory activities of compounds (4a-m) against both EGFR-WT and EGFR-T790M using two different molecular docking processes.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1090-2120
- Volume :
- 142
- Database :
- MEDLINE
- Journal :
- Bioorganic chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 37890211
- Full Text :
- https://doi.org/10.1016/j.bioorg.2023.106936