Back to Search
Start Over
Inferring free-energy barriers and kinetic rates from molecular dynamics via underdamped Langevin models.
- Source :
-
The Journal of chemical physics [J Chem Phys] 2023 Oct 28; Vol. 159 (16). - Publication Year :
- 2023
-
Abstract
- Rare events include many of the most interesting transformation processes in condensed matter, from phase transitions to biomolecular conformational changes to chemical reactions. Access to the corresponding mechanisms, free-energy landscapes and kinetic rates can in principle be obtained by different techniques after projecting the high-dimensional atomic dynamics on one (or a few) collective variable. Even though it is well-known that the projected dynamics approximately follows - in a statistical sense - the generalized, underdamped or overdamped Langevin equations (depending on the time resolution), to date it is nontrivial to parameterize such equations starting from a limited, practically accessible amount of non-ergodic trajectories. In this work we focus on Markovian, underdamped Langevin equations, that arise naturally when considering, e.g., numerous water-solution processes at sub-picosecond resolution. After contrasting the advantages and pitfalls of different numerical approaches, we present an efficient parametrization strategy based on a limited set of molecular dynamics data, including equilibrium trajectories confined to minima and few hundreds transition path sampling-like trajectories. Employing velocity autocorrelation or memory kernel information for learning the friction and likelihood maximization for learning the free-energy landscape, we demonstrate the possibility to reconstruct accurate barriers and rates both for a benchmark system and for the interaction of carbon nanoparticles in water.<br /> (© 2023 Author(s). Published under an exclusive license by AIP Publishing.)
Details
- Language :
- English
- ISSN :
- 1089-7690
- Volume :
- 159
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- The Journal of chemical physics
- Publication Type :
- Academic Journal
- Accession number :
- 37882336
- Full Text :
- https://doi.org/10.1063/5.0169050