Back to Search
Start Over
Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes.
- Source :
-
NeuroImage [Neuroimage] 2023 Dec 01; Vol. 283, pp. 120419. Date of Electronic Publication: 2023 Oct 21. - Publication Year :
- 2023
-
Abstract
- Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.<br />Competing Interests: Declaration of Competing Interest None.<br /> (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Humans
Basal Ganglia diagnostic imaging
Echo-Planar Imaging methods
Subjects
Details
- Language :
- English
- ISSN :
- 1095-9572
- Volume :
- 283
- Database :
- MEDLINE
- Journal :
- NeuroImage
- Publication Type :
- Academic Journal
- Accession number :
- 37871759
- Full Text :
- https://doi.org/10.1016/j.neuroimage.2023.120419