Back to Search Start Over

A biomechanical perspective on perineal injuries during childbirth.

Authors :
Moura R
Oliveira DA
Parente MPL
Kimmich N
Natal Jorge RM
Source :
Computer methods and programs in biomedicine [Comput Methods Programs Biomed] 2024 Jan; Vol. 243, pp. 107874. Date of Electronic Publication: 2023 Oct 20.
Publication Year :
2024

Abstract

Background and Objective: Childbirth trauma is a major health concern that affects millions of women worldwide. Severe degrees of perineal trauma, designated as obstetric anal sphincter injuries (OASIS), and levator ani muscle (LAM) injuries are associated with long-term morbidity. While significant research has been conducted on LAM avulsions, less attention has been given to perineal trauma and OASIS, which affect up to 90% and 11% of vaginal deliveries, respectively. Despite being widely discussed, childbirth trauma remains unpredictable. This work aims to enhance the modeling of the maternal musculature during childbirth, with a particular focus on understanding the mechanisms underlying the often overlooked perineal injuries.<br />Methods: A geometrical model of the pelvic floor muscles (PFM) and perineum (including the perineal body, ischiocavernosus, bulbospongiosus, superficial and deep transverse perineal muscles) was created. The muscles were characterized by a transversely isotropic visco-hyperelastic constitutive model. Two simulations of vaginal delivery were conducted with the fetus in the vertex presentation and occipito-anterior position, with and without the perineum.<br />Results: The simulation that considered the perineum exhibited higher stresses over an extended area of the PFM, which suggests that including additional structures can impact the obtained results. The maximum stretch of the urogenital hiatus was 2.94 and the maximum stress was 23.86 kPa. The perineal body reached a maximum stretch of 1.95, which was more pronounced near the urogenital hiatus, where perineal tears may occur. The external anal sphincter's transverse diameter decreased by 51% and the maximum principal stresses were observed in the area close to the perineal body, where OASIS can occur.<br />Conclusions: The present study emphasizes the importance of including most structures involved in vaginal delivery in its biomechanical analysis and represents another step further in the understanding of perineal injuries and OASIS. The superior region of the perineal body and its connection to the urogenital hiatus and anal sphincter have been identified as the most critical regions, highly susceptible to injury.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-7565
Volume :
243
Database :
MEDLINE
Journal :
Computer methods and programs in biomedicine
Publication Type :
Academic Journal
Accession number :
37866128
Full Text :
https://doi.org/10.1016/j.cmpb.2023.107874