Back to Search Start Over

Exposure of Mycobacterium tuberculosis to human alveolar lining fluid shows temporal and strain-specific adaptation to the lung environment.

Exposure of Mycobacterium tuberculosis to human alveolar lining fluid shows temporal and strain-specific adaptation to the lung environment.

Authors :
Allué-Guardia A
Garcia-Vilanova A
Schami AM
Olmo-Fontánez AM
Hicks A
Peters J
Maselli DJ
Wewers MD
Wang Y
Torrelles JB
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Sep 28. Date of Electronic Publication: 2023 Sep 28.
Publication Year :
2023

Abstract

Upon infection, Mycobacterium tuberculosis ( M.tb ) reaches the alveolar space and comes in close contact with human alveolar lining fluid (ALF) for an uncertain period of time prior to its encounter with alveolar cells. We showed that homeostatic ALF hydrolytic enzymes modify the M.tb cell envelope, driving M.tb -host cell interactions. Still, the contribution of ALF during M.tb infection is poorly understood. Here, we exposed 4 M.tb strains with different levels of virulence, transmissibility, and drug resistance (DR) to physiological concentrations of human ALF for 15-min and 12-h, and performed RNA sequencing. Gene expression analysis showed a temporal and strain-specific adaptation to human ALF. Differential expression (DE) of ALF-exposed vs. unexposed M.tb revealed a total of 397 DE genes associated with lipid metabolism, cell envelope and processes, intermediary metabolism and respiration, and regulatory proteins, among others. Most DE genes were detected at 12-h post-ALF exposure, with DR- M.tb strain W-7642 having the highest number of DE genes. Interestingly, genes from the KstR2 regulon, which controls the degradation of cholesterol C and D rings, were significantly upregulated in all strains post-ALF exposure. These results indicate that M.tb -ALF contact drives initial metabolic and physiologic changes in M.tb , with potential implications in infection outcome.<br />Importance: Tuberculosis, caused by airborne pathogen Mycobacterium tuberculosis ( M.tb ), is one of the leading causes of mortality worldwide. Upon infection, M.tb reaches the alveoli and gets in contact with human alveolar lining fluid (ALF), where ALF hydrolases modify the M.tb cell envelope driving subsequent M.tb -host cell interactions. Still, the contributions of ALF during infection are poorly understood. We exposed 4 M.tb strains to ALF for 15-min and 12-h and performed RNA sequencing, demonstrating a temporal and strain-specific adaptation of M.tb to ALF. Interestingly, genes associated with cholesterol degradation were highly upregulated in all strains. This study shows for the first time that ALF drives global metabolic changes in M.tb during the initial stages of the infection, with potential implications in disease outcome. Biologically relevant networks and common and strain-specific bacterial determinants derived from this study could be further investigated as potential therapeutic candidates.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
37808780
Full Text :
https://doi.org/10.1101/2023.09.27.559381