Cite
Machine learning approaches in microbiome research: challenges and best practices.
MLA
Papoutsoglou, Georgios, et al. “Machine Learning Approaches in Microbiome Research: Challenges and Best Practices.” Frontiers in Microbiology, vol. 14, Sept. 2023, p. 1261889. EBSCOhost, https://doi.org/10.3389/fmicb.2023.1261889.
APA
Papoutsoglou, G., Tarazona, S., Lopes, M. B., Klammsteiner, T., Ibrahimi, E., Eckenberger, J., Novielli, P., Tonda, A., Simeon, A., Shigdel, R., Béreux, S., Vitali, G., Tangaro, S., Lahti, L., Temko, A., Claesson, M. J., & Berland, M. (2023). Machine learning approaches in microbiome research: challenges and best practices. Frontiers in Microbiology, 14, 1261889. https://doi.org/10.3389/fmicb.2023.1261889
Chicago
Papoutsoglou, Georgios, Sonia Tarazona, Marta B Lopes, Thomas Klammsteiner, Eliana Ibrahimi, Julia Eckenberger, Pierfrancesco Novielli, et al. 2023. “Machine Learning Approaches in Microbiome Research: Challenges and Best Practices.” Frontiers in Microbiology 14 (September): 1261889. doi:10.3389/fmicb.2023.1261889.