Back to Search Start Over

Heterogeneous effects on type 2 diabetes and cardiovascular outcomes of genetic variants and traits associated with fasting insulin.

Authors :
Manning A
Sevilla-González M
Smith K
Wang N
Jensen A
Litkowski E
Kim H
DiCorpo D
Westerman K
Cui J
Liu CT
Yu C
McNeil J
Lacaze P
Chang KM
Tsao P
Phillips L
Goodarzi M
Sladek R
Rotter J
Dupuis J
Florez J
Merino J
Meigs J
Zhou J
Raghavan S
Udler M
Source :
Research square [Res Sq] 2023 Sep 19. Date of Electronic Publication: 2023 Sep 19.
Publication Year :
2023

Abstract

Hyperinsulinemia is a complex and heterogeneous phenotype that characterizes molecular alterations that precede the development of type 2 diabetes (T2D). It results from a complex combination of molecular processes, including insulin secretion and insulin sensitivity, that differ between individuals. To better understand the physiology of hyperinsulinemia and ultimately T2D, we implemented a genetic approach grouping fasting insulin (FI)-associated genetic variants based on their molecular and phenotypic similarities. We identified seven distinctive genetic clusters representing different physiologic mechanisms leading to rising FI levels, ranging from clusters of variants with effects on increased FI, but without increased risk of T2D (non-diabetogenic hyperinsulinemia), to clusters of variants that increase FI and T2D risk with demonstrated strong effects on body fat distribution, liver, lipid, and inflammatory processes (diabetogenic hyperinsulinemia). We generated cluster-specific polygenic scores in 1,104,258 individuals from five multi-ancestry cohorts to show that the clusters differed in associations with cardiometabolic traits. Among clusters characterized by non-diabetogenic hyperinsulinemia, there was both increased and decreased risk of coronary artery disease despite the non-increased risk of T2D. Similarly, the clusters characterized by diabetogenic hyperinsulinemia were associated with an increased risk of T2D, yet had differing risks of cardiovascular conditions, including coronary artery disease, myocardial infarction, and stroke. The strongest cluster-T2D associations were observed with the same direction of effect in non-Hispanic Black, Hispanic, non-Hispanic White, and non-Hispanic East Asian populations. These genetic clusters provide important insights into granular metabolic processes underlying the physiology of hyperinsulinemia, notably highlighting specific processes that decouple increasing FI levels from T2D and cardiovascular risk. Our findings suggest that increasing FI levels are not invariably associated with adverse cardiometabolic outcomes.<br />Competing Interests: Conflicts of interest The remaining authors had no conflicts of interest.

Details

Language :
English
Database :
MEDLINE
Journal :
Research square
Accession number :
37790568
Full Text :
https://doi.org/10.21203/rs.3.rs-3317661/v1