Back to Search Start Over

Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics.

Authors :
Gradauskaite E
Meier QN
Gray N
Sarott MF
Scharsach T
Campanini M
Moran T
Vogel A
Del Cid-Ledezma K
Huey BD
Rossell MD
Fiebig M
Trassin M
Source :
Nature materials [Nat Mater] 2023 Dec; Vol. 22 (12), pp. 1492-1498. Date of Electronic Publication: 2023 Oct 02.
Publication Year :
2023

Abstract

Material surfaces encompass structural and chemical discontinuities that often lead to the loss of the property of interest in so-called dead layers. It is particularly problematic in nanoscale oxide electronics, where the integration of strongly correlated materials into devices is obstructed by the thickness threshold required for the emergence of their functionality. Here we report the stabilization of ultrathin out-of-plane ferroelectricity in oxide heterostructures through the design of an artificial flux-closure architecture. Inserting an in-plane-polarized ferroelectric epitaxial buffer provides the continuity of polarization at the interface; despite its insulating nature, we observe the emergence of polarization in our out-of-plane-polarized model of ferroelectric BaTiO <subscript>3</subscript> from the very first unit cell. In BiFeO <subscript>3</subscript> , the flux-closure approach stabilizes a 251° domain wall. Its unusual chirality is probably associated with the ferroelectric analogue to the Dzyaloshinskii-Moriya interaction. We, thus, see that in an adaptively engineered geometry, the depolarizing-field-screening properties of an insulator can even surpass those of a metal and be a source of functionality. This could be a useful insight on the road towards the next generation of oxide electronics.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
1476-4660
Volume :
22
Issue :
12
Database :
MEDLINE
Journal :
Nature materials
Publication Type :
Academic Journal
Accession number :
37783942
Full Text :
https://doi.org/10.1038/s41563-023-01674-2