Back to Search
Start Over
Using a dual-stream attention neural network to characterize mild cognitive impairment based on retinal images.
- Source :
-
Computers in biology and medicine [Comput Biol Med] 2023 Nov; Vol. 166, pp. 107411. Date of Electronic Publication: 2023 Sep 09. - Publication Year :
- 2023
-
Abstract
- Mild cognitive impairment (MCI) is a critical transitional stage between normal cognition and dementia, for which early detection is crucial for timely intervention. Retinal imaging has been shown as a promising potential biomarker for MCI. This study aimed to develop a dual-stream attention neural network to classify individuals with MCI based on multi-modal retinal images. Our approach incorporated a cross-modality fusion technique, a variable scale dense residual model, and a multi-classifier mechanism within the dual-stream network. The model utilized a residual module to extract image features and employed a multi-level feature aggregation method to capture complex context information. Self-attention and cross-attention modules were utilized at each convolutional layer to fuse features from optical coherence tomography (OCT) and fundus modalities, resulting in multiple output losses. The neural network was applied to classify individuals with MCI, Alzheimer's disease, and control participants with normal cognition. Through fine-tuning the pre-trained model, we classified community-dwelling participants into two groups based on cognitive impairment test scores. To identify retinal imaging biomarkers associated with accurate prediction, we used the Gradient-weighted Class Activation Mapping technique. The proposed method achieved high precision rates of 84.96% and 80.90% in classifying MCI and positive test scores for cognitive impairment, respectively. Notably, changes in the optic nerve head on fundus photographs or OCT images among patients with MCI were not used to discriminate patients from the control group. These findings demonstrate the potential of our approach in identifying individuals with MCI and emphasize the significance of retinal imaging for early detection of cognitive impairment.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Published by Elsevier Ltd.)
Details
- Language :
- English
- ISSN :
- 1879-0534
- Volume :
- 166
- Database :
- MEDLINE
- Journal :
- Computers in biology and medicine
- Publication Type :
- Academic Journal
- Accession number :
- 37738896
- Full Text :
- https://doi.org/10.1016/j.compbiomed.2023.107411