Back to Search Start Over

Chiral Discrimination of Penicillamine Enantiomers: The Role of Aggregation-Caused Quenching in Achieving High Selectivity.

Authors :
Lan L
Song X
Kuang X
Sun X
Kuang R
Source :
Analytical chemistry [Anal Chem] 2023 Oct 03; Vol. 95 (39), pp. 14659-14664. Date of Electronic Publication: 2023 Sep 19.
Publication Year :
2023

Abstract

The recognition and separation of chiral isomers are of great importance in both industrial and biological applications. In this study, a chiral recognition system based on electrochemiluminescence was established for the detection of penicillamine (PA) enantiomers. The system utilized a homochiral [Zn <subscript>2</subscript> (BDC)(d-lac)] (Zn-BL) platform for the uniform distribution of Ru(bpy) <subscript>3</subscript> <superscript>2+</superscript> nanoparticles, effectively mitigating aggregation-caused quenching. The chiral recognition ability of Zn-BL was tested to distinguish between PA enantiomers, and the results indicated a substantial increase in the chiral electrochemiluminescence (ECL) signal when l-PA was present, in contrast to d-PA. The mechanism underlying ECL chiral discrimination was investigated using water contact angle measurements, DFT calculations, and electrochemical characterization. The system exhibited high selectivity, stability, and reproducibility for PA enantiomer detection. Furthermore, the proposed method can accurately identify one enantiomer of PA in a mixture. This study provides a reliable and sensitive approach for achieving the highly selective detection of chiral molecules.

Details

Language :
English
ISSN :
1520-6882
Volume :
95
Issue :
39
Database :
MEDLINE
Journal :
Analytical chemistry
Publication Type :
Academic Journal
Accession number :
37725048
Full Text :
https://doi.org/10.1021/acs.analchem.3c02516