Back to Search Start Over

Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice.

Authors :
Yue Y
Hotta T
Higaki T
Verhey KJ
Ohi R
Source :
Current biology : CB [Curr Biol] 2023 Oct 09; Vol. 33 (19), pp. 4111-4123.e7. Date of Electronic Publication: 2023 Sep 15.
Publication Year :
2023

Abstract

Tubulin, a heterodimer of α- and β-tubulin, is a GTPase that assembles into microtubule (MT) polymers whose dynamic properties are intimately coupled to nucleotide hydrolysis. In cells, the organization and dynamics of MTs are further tuned by post-translational modifications (PTMs), which control the ability of MT-associated proteins (MAPs) and molecular motors to engage MTs. Detyrosination is a PTM of α-tubulin, wherein its C-terminal tyrosine residue is enzymatically removed by either the vasohibin (VASH) or MT-associated tyrosine carboxypeptidase (MATCAP) peptidases. How these enzymes generate specific patterns of MT detyrosination in cells is not known. Here, we use a novel antibody-based probe to visualize the formation of detyrosinated MTs in real time and employ single-molecule imaging of VASH1 bound to its regulatory partner small-vasohibin binding protein (SVBP) to understand the process of MT detyrosination in vitro and in cells. We demonstrate that the activity, but not binding, of VASH1/SVBP is much greater on mimics of guanosine triphosphate (GTP)-MTs than on guanosine diphosphate (GDP)-MTs. Given emerging data showing that tubulin subunits in GTP-MTs are in expanded conformation relative to tubulin subunits in GDP-MTs, we reasoned that the lattice conformation of MTs is a key factor that gates the activity of VASH1/SVBP. We show that Taxol, a drug known to expand the MT lattice, promotes MT detyrosination and that CAMSAP2 and CAMSAP3 are two MAPs that spatially regulate detyrosination in cells. Collectively, our work shows that VASH1/SVBP detyrosination is regulated by the conformational state of tubulin in the MT lattice and that this is spatially determined in cells by the activity of MAPs.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1879-0445
Volume :
33
Issue :
19
Database :
MEDLINE
Journal :
Current biology : CB
Publication Type :
Academic Journal
Accession number :
37716348
Full Text :
https://doi.org/10.1016/j.cub.2023.07.062