Back to Search Start Over

A deep learning pipeline for automated classification of vocal fold polyps in flexible laryngoscopy.

Authors :
Yao P
Witte D
German A
Periyakoil P
Kim YE
Gimonet H
Sulica L
Born H
Elemento O
Barnes J
Rameau A
Source :
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery [Eur Arch Otorhinolaryngol] 2024 Apr; Vol. 281 (4), pp. 2055-2062. Date of Electronic Publication: 2023 Sep 11.
Publication Year :
2024

Abstract

Purpose: To develop and validate a deep learning model for distinguishing healthy vocal folds (HVF) and vocal fold polyps (VFP) on laryngoscopy videos, while demonstrating the ability of a previously developed informative frame classifier in facilitating deep learning development.<br />Methods: Following retrospective extraction of image frames from 52 HVF and 77 unilateral VFP videos, two researchers manually labeled each frame as informative or uninformative. A previously developed informative frame classifier was used to extract informative frames from the same video set. Both sets of videos were independently divided into training (60%), validation (20%), and test (20%) by patient. Machine-labeled frames were independently verified by two researchers to assess the precision of the informative frame classifier. Two models, pre-trained on ResNet18, were trained to classify frames as containing HVF or VFP. The accuracy of the polyp classifier trained on machine-labeled frames was compared to that of the classifier trained on human-labeled frames. The performance was measured by accuracy and area under the receiver operating characteristic curve (AUROC).<br />Results: When evaluated on a hold-out test set, the polyp classifier trained on machine-labeled frames achieved an accuracy of 85% and AUROC of 0.84, whereas the classifier trained on human-labeled frames achieved an accuracy of 69% and AUROC of 0.66.<br />Conclusion: An accurate deep learning classifier for vocal fold polyp identification was developed and validated with the assistance of a peer-reviewed informative frame classifier for dataset assembly. The classifier trained on machine-labeled frames demonstrates improved performance compared to the classifier trained on human-labeled frames.<br /> (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1434-4726
Volume :
281
Issue :
4
Database :
MEDLINE
Journal :
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
Publication Type :
Academic Journal
Accession number :
37695363
Full Text :
https://doi.org/10.1007/s00405-023-08190-8