Back to Search
Start Over
Stochastic modeling of Dalbulus maidis, vector of maize diseases.
- Source :
-
Theoretical population biology [Theor Popul Biol] 2023 Dec; Vol. 154, pp. 51-66. Date of Electronic Publication: 2023 Sep 03. - Publication Year :
- 2023
-
Abstract
- We developed a simple linear stochastic model for Dalbulus maidis dependent exclusively on temperature, whose parameters were determined from published field and laboratory studies performed at different temperatures. This model takes into account the principal stages and events of the life cycle of this pest, which is vector of maize diseases. We implemented the effect of distributed delays or Linear Chain Trick (LCT) considering a fixed number of sub-stages for egg and nymph stages of Dalbulus maidis in order to accurately represent what is observed in nature. A sensitivity analysis allows us to observe that the speed of the dynamics is sensitive to changes in the development rates, but not to the longevity of each stage or the fecundity, which almost exclusively affect insect abundance. We used our model to study its predictive and explanatory capacity considering a published experiment as a case study. Although the simulation results show a behavior qualitatively equivalent to that observed in the experimental results it is not possible to explain accurately the magnitude, nor the times in which the maximum abundances of second-generation nymphs and adults are reached. Therefore, we evaluated three possible scenarios for the insect that allow us to glimpse some of the advantages of having a computational model in order to find out what processes, taken into account in the model, may explain the differences observed between published experimental results and model results. The three proposed scenarios, based on variations in the parameterized rates of the model, can satisfactorily explain the experimental observations. We observed that in order to better simulate the experimental results it is not necessary to modify fecundity or mortality rates. However, it is necessary to accelerate the average development rates of our model by 20 to 40 %, compatible with extreme values of the rates close to the upper edges of the confidence bands of our parameterization rate curves, according to insects with faster development rates already reported in literature.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1096-0325
- Volume :
- 154
- Database :
- MEDLINE
- Journal :
- Theoretical population biology
- Publication Type :
- Academic Journal
- Accession number :
- 37669715
- Full Text :
- https://doi.org/10.1016/j.tpb.2023.08.003