Back to Search Start Over

Iron 3D-Orbital Configuration Dependent Electron Transfer for Efficient Fenton-Like Catalysis.

Authors :
Wu Y
Wang X
She T
Li T
Wang Y
Xu Z
Jin X
Song H
Yang S
Li S
Yan S
He H
Zhang L
Zou Z
Source :
Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Jan; Vol. 20 (2), pp. e2306464. Date of Electronic Publication: 2023 Sep 01.
Publication Year :
2024

Abstract

Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing  reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (Fe <subscript>Oh</subscript> ) and tetrahedral (Fe <subscript>Td</subscript> ) sites in spinel ZnFe <subscript>2</subscript> O <subscript>4</subscript> and FeAl <subscript>2</subscript> O <subscript>4</subscript> , respectively. ZnFe <subscript>2</subscript> O <subscript>4</subscript> (136.58 min <superscript>-1</superscript> F <superscript>-1</superscript> cm <superscript>2</superscript> ) presented higher specific activity than FeAl <subscript>2</subscript> O <subscript>4</subscript> (97.47 min <superscript>-1</superscript> F <superscript>-1</superscript> cm <superscript>2</superscript> ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe <subscript>2</subscript> O <subscript>4</subscript> has a larger bond order to decompose PMS. Using this descriptor, high-spin Fe <subscript>Oh</subscript> is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin Fe <subscript>Td</subscript> prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of <superscript>1</superscript> O <subscript>2</subscript> on ZnFe <subscript>2</subscript> O <subscript>4</subscript> and O <subscript>2</subscript> <superscript>•-</superscript> on FeAl <subscript>2</subscript> O <subscript>4</subscript> via quenching experiments. Electrochemical determinations reveal that Fe <subscript>Oh</subscript> has superior capability than Fe <subscript>Td</subscript> for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe <subscript>2</subscript> O <subscript>4</subscript> is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.<br /> (© 2023 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1613-6829
Volume :
20
Issue :
2
Database :
MEDLINE
Journal :
Small (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
37658488
Full Text :
https://doi.org/10.1002/smll.202306464