Back to Search
Start Over
Iron 3D-Orbital Configuration Dependent Electron Transfer for Efficient Fenton-Like Catalysis.
- Source :
-
Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Jan; Vol. 20 (2), pp. e2306464. Date of Electronic Publication: 2023 Sep 01. - Publication Year :
- 2024
-
Abstract
- Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing  reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (Fe <subscript>Oh</subscript> ) and tetrahedral (Fe <subscript>Td</subscript> ) sites in spinel ZnFe <subscript>2</subscript> O <subscript>4</subscript> and FeAl <subscript>2</subscript> O <subscript>4</subscript> , respectively. ZnFe <subscript>2</subscript> O <subscript>4</subscript> (136.58 min <superscript>-1</superscript> F <superscript>-1</superscript> cm <superscript>2</superscript> ) presented higher specific activity than FeAl <subscript>2</subscript> O <subscript>4</subscript> (97.47 min <superscript>-1</superscript> F <superscript>-1</superscript> cm <superscript>2</superscript> ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe <subscript>2</subscript> O <subscript>4</subscript> has a larger bond order to decompose PMS. Using this descriptor, high-spin Fe <subscript>Oh</subscript> is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin Fe <subscript>Td</subscript> prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of <superscript>1</superscript> O <subscript>2</subscript> on ZnFe <subscript>2</subscript> O <subscript>4</subscript> and O <subscript>2</subscript> <superscript>•-</superscript> on FeAl <subscript>2</subscript> O <subscript>4</subscript> via quenching experiments. Electrochemical determinations reveal that Fe <subscript>Oh</subscript> has superior capability than Fe <subscript>Td</subscript> for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe <subscript>2</subscript> O <subscript>4</subscript> is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.<br /> (© 2023 Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1613-6829
- Volume :
- 20
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Small (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 37658488
- Full Text :
- https://doi.org/10.1002/smll.202306464