Back to Search Start Over

Cadmium-tolerant Bacillus cereus 2-7 alleviates the phytotoxicity of cadmium exposure in banana plantlets.

Authors :
Zhang L
Hu Y
Chen Y
Qi D
Cai B
Zhao Y
Li Z
Wang Y
Nie Z
Xie J
Wang W
Source :
The Science of the total environment [Sci Total Environ] 2023 Dec 10; Vol. 903, pp. 166645. Date of Electronic Publication: 2023 Aug 30.
Publication Year :
2023

Abstract

Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
903
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
37657542
Full Text :
https://doi.org/10.1016/j.scitotenv.2023.166645