Back to Search
Start Over
Complex intestinal and hepatic in vitro barrier models reveal information on uptake and impact of micro-, submicro- and nanoplastics.
- Source :
-
Environment international [Environ Int] 2023 Sep; Vol. 179, pp. 108172. Date of Electronic Publication: 2023 Aug 25. - Publication Year :
- 2023
-
Abstract
- Plastic particles are found almost ubiquitously in the environment and can get ingested orally by humans. We have used food-relevant microplastics (2 µm polylactic acid), submicroplastics (250 nm polylactic acid and 366 nm melamine formaldehyde resin) and nanoplastics (25 nm polymethylmethacrylate) to study material- and size-dependent uptake and transport across the human intestinal barrier and liver. Therefore, different Transwell™-based in vitro (co-)culture models were used: Differentiated Caco-2 cells mimicking the intestinal enterocyte monolayer, an M-cell model complementing the Caco-2 monoculture with antigen uptake-specialized cells, a mucus model complementing the barrier with an intestinal mucus layer, and an intestinal-liver co-culture combining differentiated Caco-2 cells with differentiated HepaRG cells. Using these complex barrier models, uptake and transport of particles were analyzed based on the fluorescence of the particles using confocal microscopy and a fluorescence-based quantification method. Additionally, the results were verified by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) analysis. Furthermore, an effect screening at the mRNA level was done to investigate oxidative stress response, inflammation and changes to xenobiotic metabolism in intestinal and hepatic cells after exposure to plastic particles. Oxidative stress and inflammation were additionally analyzed using a flow-cytometric assay for reactive oxygen species and cytokine measurements. The results reveal a noteworthy uptake into and transport of microplastic and submicroplastic particles across the intestinal epithelium. Particularly, we show a pronounced uptake of particles into liver cells after crossing of the intestinal epithelium, using the intestinal-liver co-culture. The particles evoke some alterations in xenobiotic metabolism, but did not cause increased oxidative stress or inflammatory response on protein level. Taken together, these complex barrier models can be applied on micro-, submicro- and nanoplastics and reveal information in particle uptake, transport and cellular impact.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Subjects :
- Humans
Caco-2 Cells
Xenobiotics
Liver
Inflammation
Microplastics toxicity
Plastics
Subjects
Details
- Language :
- English
- ISSN :
- 1873-6750
- Volume :
- 179
- Database :
- MEDLINE
- Journal :
- Environment international
- Publication Type :
- Academic Journal
- Accession number :
- 37657408
- Full Text :
- https://doi.org/10.1016/j.envint.2023.108172