Back to Search Start Over

Hybridizing machine learning in survival analysis of cardiac PET/CT imaging.

Authors :
Juarez-Orozco LE
Niemi M
Yeung MW
Benjamins JW
Maaniitty T
Teuho J
Saraste A
Knuuti J
van der Harst P
Klén R
Source :
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology [J Nucl Cardiol] 2023 Dec; Vol. 30 (6), pp. 2750-2759. Date of Electronic Publication: 2023 Sep 01.
Publication Year :
2023

Abstract

Background: Machine Learning (ML) allows integration of the numerous variables delivered by cardiac PET/CT, while traditional survival analysis can provide explainable prognostic estimates from a restricted number of input variables. We implemented a hybrid ML-and-survival analysis of multimodal PET/CT data to identify patients who developed myocardial infarction (MI) or death in long-term follow up.<br />Methods: Data from 739 intermediate risk patients who underwent coronary CT and selectively stress <superscript>15</superscript> O-water-PET perfusion were analyzed for the occurrence of MI and all-cause mortality. Images were evaluated segmentally for atherosclerosis and absolute myocardial perfusion through 75 variables that were integrated through ML into an ML-CCTA and an ML-PET score. These scores were then modeled along with clinical variables through Cox regression. This hybridized model was compared against an expert interpretation-based and a calcium score-based model.<br />Results: Compared with expert- and calcium score-based models, the hybridized ML-survival model showed the highest performance (CI .81 vs .71 and .64). The strongest predictor for outcomes was the ML-CCTA score.<br />Conclusion: Prognostic modeling of PET/CT data for the long-term occurrence of adverse events may be improved through ML imaging score integration and subsequent traditional survival analysis with clinical variables. This hybridization of methods offers an alternative to traditional survival modeling of conventional expert image scoring and interpretation.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
1532-6551
Volume :
30
Issue :
6
Database :
MEDLINE
Journal :
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
Publication Type :
Academic Journal
Accession number :
37656345
Full Text :
https://doi.org/10.1007/s12350-023-03359-4