Back to Search
Start Over
Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions.
- Source :
-
Neuron [Neuron] 2023 Nov 15; Vol. 111 (22), pp. 3650-3667.e6. Date of Electronic Publication: 2023 Aug 30. - Publication Year :
- 2023
-
Abstract
- Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Subjects :
- Mice
Animals
Fear physiology
Superior Colliculi physiology
Gyrus Cinguli
Zona Incerta
Subjects
Details
- Language :
- English
- ISSN :
- 1097-4199
- Volume :
- 111
- Issue :
- 22
- Database :
- MEDLINE
- Journal :
- Neuron
- Publication Type :
- Academic Journal
- Accession number :
- 37652003
- Full Text :
- https://doi.org/10.1016/j.neuron.2023.08.008