Back to Search
Start Over
Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms.
- Source :
-
Biochemical pharmacology [Biochem Pharmacol] 2023 Oct; Vol. 216, pp. 115759. Date of Electronic Publication: 2023 Aug 19. - Publication Year :
- 2023
-
Abstract
- The combination of venetoclax (VEN) and azacitidine (AZA) has become the standard of care for acute myeloid leukemia (AML) patients who are ≥ 75 years or unfit for intensive chemotherapy. Though initially promising, resistance to the combination therapy is an issue and VEN + AZA-relapsed/refractory patients have dismal outcomes. To better understand the mechanisms of resistance, we developed VEN + AZA-resistant AML cell lines, MV4-11/VEN + AZA-R and ML-2/VEN + AZA-R, which show > 300-fold persistent resistance compared to the parental lines. We demonstrate that these cells have unique metabolic profiles, including significantly increased levels of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP), changes in fatty acid and amino acid metabolism and increased utilization and reliance on glycolysis. Furthermore, fatty acid transporter CD36 is increased in the resistant cells compared to the parental cells. Inhibition of glycolysis with 2-Deoxy-D-glucose re-sensitized the resistant cells to VEN + AZA. In addition, the VEN + AZA-R cells have increased levels of the antiapoptotic protein Mcl-1 and decreased levels of the pro-apoptotic protein Bax. Overexpression of Mcl-1 or knockdown of Bax result in resistance to VEN + AZA. Our results provide insight into the molecular mechanisms contributing to VEN + AZA resistance and assist in the development of novel therapeutics to overcome this resistance in AML patients.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-2968
- Volume :
- 216
- Database :
- MEDLINE
- Journal :
- Biochemical pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 37604291
- Full Text :
- https://doi.org/10.1016/j.bcp.2023.115759