Back to Search
Start Over
A machine learning model for colorectal liver metastasis post-hepatectomy prognostications.
- Source :
-
Hepatobiliary surgery and nutrition [Hepatobiliary Surg Nutr] 2023 Aug 01; Vol. 12 (4), pp. 495-506. Date of Electronic Publication: 2022 Jul 12. - Publication Year :
- 2023
-
Abstract
- Background: Currently, surgical resection is the mainstay for colorectal liver metastases (CRLM) management and the only potentially curative treatment modality. Prognostication tools can support patient selection for surgical resection to maximize therapeutic benefit. This study aimed to develop a survival prediction model using machine learning based on a multicenter patient sample in Hong Kong.<br />Methods: Patients who underwent hepatectomy for CRLM between 1 January 2009 and 31 December 2018 in four hospitals in Hong Kong were included in the study. Survival analysis was performed using Cox proportional hazards (CPH). A stepwise selection on Cox multivariable models with Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to a multiply-imputed dataset to build a prediction model. The model was validated in the validation set, and its performance was compared with that of Fong Clinical Risk Score (CRS) using concordance index.<br />Results: A total of 572 patients were included with a median follow-up of 3.6 years. The full models for overall survival (OS) and recurrence-free survival (RFS) consist of the same 8 established and novel variables, namely colorectal cancer nodal stage, CRLM neoadjuvant treatment, Charlson Comorbidity Score, pre-hepatectomy bilirubin and carcinoembryonic antigen (CEA) levels, CRLM largest tumor diameter, extrahepatic metastasis detected on positron emission-tomography (PET)-scan as well as KRAS status. Our CRLM Machine-learning Algorithm Prognostication model (CMAP) demonstrated better ability to predict OS (C-index =0.651), compared with the Fong CRS for 1-year (C-index =0.571) and 5-year OS (C-index =0.574). It also achieved a C-index of 0.651 for RFS.<br />Conclusions: We present a promising machine learning algorithm to individualize prognostications for patients following resection of CRLM with good discriminative ability.<br />Competing Interests: Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-453/coif). CML serves as the unpaid editorial board member of Hepatobiliary Surgery and Nutrition. The other authors have no conflicts of interest to declare.<br /> (2023 Hepatobiliary Surgery and Nutrition. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2304-3881
- Volume :
- 12
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Hepatobiliary surgery and nutrition
- Publication Type :
- Academic Journal
- Accession number :
- 37601005
- Full Text :
- https://doi.org/10.21037/hbsn-21-453