Back to Search
Start Over
SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2023 Sep; Vol. 299 (9), pp. 105164. Date of Electronic Publication: 2023 Aug 16. - Publication Year :
- 2023
-
Abstract
- We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 299
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 37595871
- Full Text :
- https://doi.org/10.1016/j.jbc.2023.105164