Back to Search
Start Over
Innovative Bioplasticizers from Residual Cynara cardunculus L. Biomass-Derived Levulinic Acid and Their Environmental Impact Assessment by LCA Methodology.
- Source :
-
ACS sustainable chemistry & engineering [ACS Sustain Chem Eng] 2023 Aug 01; Vol. 11 (32), pp. 12014-12026. Date of Electronic Publication: 2023 Aug 01 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- This work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated with the obtainment of levulinic acid from residual Cynara cardunculus L. biomass and its subsequent valorization in innovative bioplasticizers for tuning the properties as well as the processability of biopolymers. This potentially allows the production of fully biobased and biodegradable bioplastic formulations, thus addressing the issues related to the fossil origin and nonbiodegradability of conventional additives, such as phthalates. Steam explosion pretreatment was applied to the epigean residue of C. cardunculus L. followed by a microwave-assisted acid-catalyzed hydrolysis. After purification, the as-obtained levulinic acid was used to synthesize different ketal-diester derivatives through a three-step selective synthesis. The levulinic acid-base additives demonstrated remarkable plasticizing efficiency when added to biobased plastics. The LCA results were used in conjunction with those from the experimental activities to find the optimal compromise between environmental impacts and mechanical and thermal properties, induced by the bioadditives in poly(3-hydroxybutyrate), PHB biopolymer.<br />Competing Interests: The authors declare no competing financial interest.<br /> (© 2023 The Authors. Published by American Chemical Society.)
Details
- Language :
- English
- ISSN :
- 2168-0485
- Volume :
- 11
- Issue :
- 32
- Database :
- MEDLINE
- Journal :
- ACS sustainable chemistry & engineering
- Publication Type :
- Academic Journal
- Accession number :
- 37593378
- Full Text :
- https://doi.org/10.1021/acssuschemeng.3c02269