Back to Search Start Over

Receptor-mediated uptake of asialoglycoprotein by the primate liver initiates both lysosomal and transcellular pathways.

Authors :
Schiff JM
Huling SL
Jones AL
Source :
Hepatology (Baltimore, Md.) [Hepatology] 1986 Sep-Oct; Vol. 6 (5), pp. 837-47.
Publication Year :
1986

Abstract

The degradation of asialoglycoproteins in hepatocytes has been well described in several animal models, but no direct evidence has yet been obtained for asialoglycoprotein processing in the primate liver. A double radiolabeling strategy was employed in the experiments described in this paper to evaluate the fate of asialoorosomucoid in the squirrel monkey. Intravenously injected asialoorosomucoid was taken up by the liver with a half-time of 1 min. Electron microscopic autoradiography showed progression of asialoorosomucoid from the hepatocyte plasma membrane through vesicles to multivesicular bodies and then to secondary lysosomes near the Golgi-rich area of the cell. Over 75% of the grains initially associated with clear endocytic compartments after injection had moved to these later organelles within 20 min. Following degradation of asialoorosomucoid labeled with the Bolton and Hunter reagent, radiocatabolites were secreted into bile, peaking approximately 47 min after injection. We also found that 7 to 8% of the injected protein entered an alternative pathway which led to resecretion of the ligand at the bile canaliculus. This was considerably more than in rats (1 to 3%), but roughly comparable to the amount in guinea pigs (10 to 17%). Intact asialoorosomucoid peaked in monkey bile approximately 27 min after injection and was 3 to 4 times more concentrated than the initial plasma concentration, indicating receptor-mediated transport. Gel filtration chromatography and polyacrylamide gel analysis of the secreted protein indicated that it had arrived in bile unaltered. Since less than 1% of the autoradiographic grains were localized to nonparenchymal cells, the hepatocyte was identified as the cell type simultaneously responsible for both pathways. We propose that missorting of some of the asialoglycoprotein to bile reflects diffusion within intracellular sorting compartments to areas primarily dedicated to the processing of unrelated ligands, such as those newly synthesized for biliary secretion.

Details

Language :
English
ISSN :
0270-9139
Volume :
6
Issue :
5
Database :
MEDLINE
Journal :
Hepatology (Baltimore, Md.)
Publication Type :
Academic Journal
Accession number :
3758937
Full Text :
https://doi.org/10.1002/hep.1840060506