Back to Search Start Over

Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms.

Authors :
Kang BS
Lee SU
Hong S
Choi SK
Shin JE
Wie JH
Jo YS
Kim YH
Kil K
Chung YH
Jung K
Hong H
Park IY
Ko HS
Source :
Scientific reports [Sci Rep] 2023 Aug 16; Vol. 13 (1), pp. 13356. Date of Electronic Publication: 2023 Aug 16.
Publication Year :
2023

Abstract

This study developed a machine learning algorithm to predict gestational diabetes mellitus (GDM) using retrospective data from 34,387 pregnancies in multi-centers of South Korea. Variables were collected at baseline, E0 (until 10 weeks' gestation), E1 (11-13 weeks' gestation) and M1 (14-24 weeks' gestation). The data set was randomly divided into training and test sets (7:3 ratio) to compare the performances of light gradient boosting machine (LGBM) and extreme gradient boosting (XGBoost) algorithms, with a full set of variables (original). A prediction model with the whole cohort achieved area under the receiver operating characteristics curve (AUC) and area under the precision-recall curve (AUPR) values of 0.711 and 0.246 at baseline, 0.720 and 0.256 at E0, 0.721 and 0.262 at E1, and 0.804 and 0.442 at M1, respectively. Then comparison of three models with different variable sets were performed: [a] variables from clinical guidelines; [b] selected variables from Shapley additive explanations (SHAP) values; and [c] Boruta algorithms. Based on model [c] with the least variables and similar or better performance than the other models, simple questionnaires were developed. The combined use of maternal factors and laboratory data could effectively predict individual risk of GDM using a machine learning model.<br /> (© 2023. Springer Nature Limited.)

Details

Language :
English
ISSN :
2045-2322
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
37587201
Full Text :
https://doi.org/10.1038/s41598-023-39680-8