Back to Search Start Over

Development of heparinized and hepatocyte growth factor-coated acellular scaffolds using porcine carotid arteries.

Authors :
Cheng J
Wang C
Guo L
Gu Y
Source :
Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2024 Jan; Vol. 112 (1), pp. e35317. Date of Electronic Publication: 2023 Aug 16.
Publication Year :
2024

Abstract

Tissue-engineered blood vessel substitutes have been developed due to the lack of suitable small-diameter vascular grafts. Xenogeneic extracellular matrix (ECM) scaffolds have the potential to provide an ideal source for off-the-shelf vascular grafts. In this study, porcine carotid arteries were used to develop ECM scaffolds by decellularization and coating with heparin and hepatocyte growth factor (HGF). After decellularization, cellular and nucleic materials were successfully removed with preservation of the main compositions (collagen, elastin, and basement membrane) of the native ECM. The ultimate tensile strength, suture strength, and burst pressure were significantly increased after cross-linking. Pore size distribution analysis revealed a porous structure within ECM scaffolds with a high distribution of pores larger than 10 μm. Heparinized scaffolds exhibited sustained release of heparin in vitro and showed potent anticoagulant activity by prolonging activated partial thromboplastin time. The scaffolds showed an enhanced HGF binding capacity as well as a constant release of HGF as a result of heparin modification. When implanted subcutaneously in rats, the modified scaffolds revealed good biocompatibility with enzyme degradation resistance, mitigated immune response, and anti-calcification. In conclusion, heparinized and HGF-coated acellular porcine carotid arteries may be a promising biological scaffold for tissue-engineered vascular grafts.<br /> (© 2023 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1552-4981
Volume :
112
Issue :
1
Database :
MEDLINE
Journal :
Journal of biomedical materials research. Part B, Applied biomaterials
Publication Type :
Academic Journal
Accession number :
37584376
Full Text :
https://doi.org/10.1002/jbm.b.35317