Back to Search
Start Over
Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands-a meta-analysis.
- Source :
-
The Science of the total environment [Sci Total Environ] 2023 Dec 10; Vol. 903, pp. 166209. Date of Electronic Publication: 2023 Aug 10. - Publication Year :
- 2023
-
Abstract
- Understanding the effects of altered precipitation regimes on root biomass in grasslands is crucial for predicting grassland responses to climate change. Nonetheless, studies investigating the effects of drought on belowground vegetation have produced mixed results. In particular, root biomass under reduced precipitation may increase, decrease or show a delayed response compared to shoot biomass, highlighting a knowledge gap in the relationship between belowground net primary production and drought. To address this gap, we conducted a meta-analysis of nearly 100 field observations of grassland root and shoot biomass changes under experimental rainfall reduction to disentangle the main drivers behind grassland responses to drought. Using a response-ratio approach we tested the hypothesis that water scarcity would induce a decrease in total biomass, but an increase in belowground biomass allocation with increased drought length and intensity, and that climate (as defined by the aridity index of the study location) would be an additional predictor. As expected, meteorological drought decreased root and shoot biomass, but aboveground and belowground biomass exhibited contrasting responses to drought duration and intensity, and their interaction with climate. In particular, drought duration had negative effects on root biomass only in wet climates while more intense drought had negative effects on root biomass only in dry climates. Shoot biomass responded negatively to drought duration regardless of climate. These results show that long-term climate is an important modulator of belowground vegetation responses to drought, which might be a consequence of different drought tolerance and adaptation strategies. This variability in vegetation responses to drought suggests that physiological plasticity and community composition shifts may mediate how climate affects carbon allocation in grasslands, and thus ultimately carbon storage in soil.<br />Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 903
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 37572920
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2023.166209