Back to Search
Start Over
New targets of TetR-type regulator SLCG_2919 for controlling lincomycin biosynthesis in Streptomyces lincolnensis.
- Source :
-
Journal of basic microbiology [J Basic Microbiol] 2024 Jan; Vol. 64 (1), pp. 119-127. Date of Electronic Publication: 2023 Aug 10. - Publication Year :
- 2024
-
Abstract
- The transcription factor (TF)-mediated regulatory network controlling lincomycin production in Streptomyces lincolnensis is yet to be fully elucidated despite several types of associated TFs having been reported. SLCG&#95;2919, a tetracycline repressor (TetR)-type regulator, was the first TF to be characterized outside the lincomycin biosynthetic cluster to directly suppress the lincomycin biosynthesis in S. lincolnensis. In this study, improved genomic systematic evolution of ligands by exponential enrichment (gSELEX), an in vitro technique, was adopted to capture additional SLCG&#95;2919-targeted sequences harboring the promoter regions of SLCG&#95;6675, SLCG&#95;4123-4124, SLCG&#95;6579, and SLCG&#95;0139-0140. The four DNA fragments were confirmed by electrophoretic mobility shift assays (EMSAs). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) showed that the corresponding target genes SLCG&#95;6675 (anthranilate synthase), SLCG&#95;0139 (LysR family transcriptional regulator), SLCG&#95;0140 (beta-lactamase), SLCG&#95;6579 (cytochrome P450), SLCG&#95;4123 (bifunctional DNA primase/polymerase), and SLCG&#95;4124 (magnesium or magnesium-dependent protein phosphatase) in ΔSLCGL&#95;2919 were differentially increased by 3.3-, 4.2-, 3.2-, 2.5-, 4.6-, and 2.2-fold relative to those in the parental strain S. lincolnensis LCGL. Furthermore, the individual inactivation of these target genes in LCGL reduced the lincomycin yield to varying degrees. This investigation expands on the known DNA targets of SLCG&#95;2919 to control lincomycin production and lays the foundation for improving industrial lincomycin yields via genetic engineering of this regulatory network.<br /> (© 2023 Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1521-4028
- Volume :
- 64
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of basic microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 37562983
- Full Text :
- https://doi.org/10.1002/jobm.202300203