Back to Search Start Over

Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES).

Authors :
Holdsworth EA
Williams JE
Pace RM
Lane AA
Gartstein M
McGuire MA
McGuire MK
Meehan CL
Source :
PloS one [PLoS One] 2023 Aug 09; Vol. 18 (8), pp. e0287839. Date of Electronic Publication: 2023 Aug 09 (Print Publication: 2023).
Publication Year :
2023

Abstract

The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2023 Holdsworth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
18
Issue :
8
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
37556398
Full Text :
https://doi.org/10.1371/journal.pone.0287839