Back to Search
Start Over
Vitamin D metabolites stimulate phosphatidylcholine transfer to renal brush-border membranes.
- Source :
-
Biochimica et biophysica acta [Biochim Biophys Acta] 1986 Jun 13; Vol. 858 (1), pp. 47-55. - Publication Year :
- 1986
-
Abstract
- The phosphatidylcholine content of both the intestinal and renal brush-border membranes and ion transport are affected by 1,25-dihydroxycholecalciferol (1,25(OH)2D3). To investigate the mechanism of this effect, liposomes were prepared containing self-quenching concentrations of fluorescent phospholipid derivatives. When these liposomes were incubated with rat renal brush-border membrane vesicles, an immediate increase in the relative fluorescence of N-4-nitrobenz-2-oxa-1,3-diazole phosphatidylcholine (NBD-PC) was detected, indicating transfer of NBD-PC into a non-quenched membrane. Addition of 1,25(OH)2D3 to the liposomes produced a dose-dependent stimulation of NBD-PC transfer to the acceptor brush-border membrane vesicles. Peripheral fluorescence was visible when the brush-border membrane vesicles were viewed with a fluorescent microscope. Using brush-border membrane vesicles from kidneys of vitamin D-deficient animals, quantitation of lipid transfer revealed a 1,25(OH)2D3 (10(-7) M) stimulation of NBD-PC transfer from 1.38 +/- 0.27 to 2.07 +/- 0.26 micrograms/h, and of PC transfer, assessed by vesicle phosphatidylcholine content, from 49.7 +/- 12 to 57.3 +/- 12 micrograms/mg protein per h (P less than 0.05). There was no significant transfer of N-(lissamine rhodamine B sulfonyl)dioleoylphosphatidylethanolamine (N-Rh-PE). In the absence of hormone, the amount of NBD-PC transferred to brush-border membrane vesicles prepared from normal rats was significantly greater than that transferred to brush-border membrane vesicles prepared from vitamin D-deficient animals (2.12 +/- 0.02 vs. 1.39 +/- 0.27 micrograms of NBD-PC/h, P less than 0.05). Both physiologic and pharmacologic concentrations of 1,25(OH)2D3 stimulated NBD-PC transfer with maximum response at 10(-14) M (2.98 +/- 0.15 micrograms/h). 24,25-Dihydroxycholecalciferol and 25-hydroxycholecalciferol (25(OH)D3) also stimulated transfer, although dose-response curves were less effective than for 1,25(OH)2D3. Cortisol and vitamin D-3 did not stimulate transfer. 1,25(OH)2D3 did not stimulate NBD-PC transfer between liposome populations.
- Subjects :
- Animals
Biological Transport drug effects
Calcitriol pharmacology
Cell Membrane metabolism
Dihydroxycholecalciferols pharmacology
In Vitro Techniques
Kinetics
Liposomes
Microvilli metabolism
Rats
Hydroxycholecalciferols pharmacology
Kidney metabolism
Phosphatidylcholines metabolism
Vitamin D Deficiency metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0006-3002
- Volume :
- 858
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta
- Publication Type :
- Academic Journal
- Accession number :
- 3754768
- Full Text :
- https://doi.org/10.1016/0005-2736(86)90290-7