Back to Search Start Over

An improved deep learning procedure for statistical downscaling of climate data.

Authors :
Kheir AMS
Elnashar A
Mosad A
Govind A
Source :
Heliyon [Heliyon] 2023 Jul 20; Vol. 9 (7), pp. e18200. Date of Electronic Publication: 2023 Jul 20 (Print Publication: 2023).
Publication Year :
2023

Abstract

Recent climate change (CC) scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6) have just been released in coarse resolution. Deep learning (DL) based on statistical downscaling has recently been used, but more research is needed, particularly in arid regions, because little is known about their suitability for extrapolating future CC scenarios. Here we analyzed this issue by downscaling maximum, and minimum temperature over the Egyptian domain based on one General Circulation Model (GCM) as CanESM5 and two shared socioeconomic pathways (SSPs) as SSP4.5 and SSP8.5 from CMIP6 using Convolutional Neural Network (CNN) herein after called CNNSD. The downscaled maximum and minimum temperatures based CNNSD was able to reproduce the observed climate over historical and future periods at a finer resolution (0.1°), reducing the biases exhibited by the original scenario. To the best of our knowledge, this is the first time CNN has been used to downscale CMIP6 scenarios, particularly in arid regions. The downscaled analysis showed that maximum and minimum temperatures are expected to rise by 4.8 °C and 4.0 °C, respectively, in the future (2015-2100), compared to the historical period, under the moderate scenario (SSP4.5). Meanwhile, under the Fossil-fueled Development scenario (SSP8.5), these values will rise by 6.3 °C and 4.2 °C, respectively as analyzed by the CNNSD. The developed approach could be used not only in Egypt but also in other developing countries, which are especially vulnerable to climate change and has a scarcity of related research. The established downscaled approach's supply can be used to provide climate services, as a driver for impact studies and adaptation decisions, and as information for policy development. More research is needed, however, to include multi-GCMs to quantify the uncertainties between GCMs and SSPs, improving the outputs for use in climate change impacts and adaptations for food and nutrition security.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2023 The Authors.)

Details

Language :
English
ISSN :
2405-8440
Volume :
9
Issue :
7
Database :
MEDLINE
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
37539241
Full Text :
https://doi.org/10.1016/j.heliyon.2023.e18200