Back to Search Start Over

Population immunity of natural infection, primary-series vaccination, and booster vaccination in Qatar during the COVID-19 pandemic: an observational study.

Authors :
Qassim SH
Chemaitelly H
Ayoub HH
Coyle P
Tang P
Yassine HM
Al Thani AA
Al-Khatib HA
Hasan MR
Al-Kanaani Z
Al-Kuwari E
Jeremijenko A
Kaleeckal AH
Latif AN
Shaik RM
Abdul-Rahim HF
Nasrallah GK
Al-Kuwari MG
Butt AA
Al-Romaihi HE
Al-Thani MH
Al-Khal A
Bertollini R
Abu-Raddad LJ
Source :
EClinicalMedicine [EClinicalMedicine] 2023 Jul 20; Vol. 62, pp. 102102. Date of Electronic Publication: 2023 Jul 20 (Print Publication: 2023).
Publication Year :
2023

Abstract

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population.<br />Methods: We estimated these population immunities in Qatar's population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies.<br />Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November 2021. Effectiveness declined linearly by ∼1 percentage point every 5 days. After Omicron emergence, effectiveness dropped from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped after Omicron emergence from 83.0% (95% CI: 65.6-91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration.<br />Interpretation: High population immunity against infection may not be sustained beyond a year, but population immunity against severe COVID-19 is durable with slow waning even after Omicron emergence.<br />Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.<br />Competing Interests: We declare no competing interests.<br /> (© 2023 The Author(s).)

Details

Language :
English
ISSN :
2589-5370
Volume :
62
Database :
MEDLINE
Journal :
EClinicalMedicine
Publication Type :
Academic Journal
Accession number :
37533414
Full Text :
https://doi.org/10.1016/j.eclinm.2023.102102