Back to Search Start Over

The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp.

Authors :
Wei L
Lin S
Yue Z
Zhang L
Ding T
Source :
Marine environmental research [Mar Environ Res] 2023 Sep; Vol. 190, pp. 106120. Date of Electronic Publication: 2023 Jul 29.
Publication Year :
2023

Abstract

Toxicity of silver nanoparticles (AgNPs) at environmentally relevant concentrations has been received an increasing attention, and their influence on the bioavailability of personal care products has been seldom studied. Here, the toxicity of AgNPs in typical diatom Navicula sp. was explored, and their influence on the bioavailability of typical personal care products such as triclosan (TCS) and galaxolide (HHCB) was also investigated. The underlying toxicity mechanisms were explored using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Low concentrations of AgNPs (10 and 50 μg L <superscript>-1</superscript> ) induced no observable responses of Navicula sp., in terms of growth rate, chlorophyll contents, and malondialdehyde accumulation. Furthermore, low doses of AgNPs could attenuate TCS or HHCB toxicity to Navicula sp., which was mainly attributed to the reduced oxidative stress. Metabolomics revealed that the disruption of DNA or RNA synthesis and instability of cytokinin-like substances may be also the reasons for the toxicity of AgNPs and TCS to Navicula sp. The damaged algal photosynthesis exposed to HHCB may be recovered by AgNPs, and the presence of signal chemicals (dehydrophytosphingosine and cardamonin) also showed a recovered algal growth. These results emphasize the potential of metabolomics to reveal toxicity mechanism, providing a new perspective on the aquatic risk assessment of nanoparticles and emerging organic pollutants.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-0291
Volume :
190
Database :
MEDLINE
Journal :
Marine environmental research
Publication Type :
Academic Journal
Accession number :
37531678
Full Text :
https://doi.org/10.1016/j.marenvres.2023.106120