Back to Search
Start Over
ReProMSig: an integrative platform for development and application of reproducible multivariable models for cancer prognosis supporting guideline-based transparent reporting.
- Source :
-
Briefings in bioinformatics [Brief Bioinform] 2023 Sep 20; Vol. 24 (5). - Publication Year :
- 2023
-
Abstract
- Adequate reporting is essential for evaluating the performance and clinical utility of a prognostic prediction model. Previous studies indicated a prevalence of incomplete or suboptimal reporting in translational and clinical studies involving development of multivariable prediction models for prognosis, which limited the potential applications of these models. While reporting templates introduced by the established guidelines provide an invaluable framework for reporting prognostic studies uniformly, there is a widespread lack of qualified adherence, which may be due to miscellaneous challenges in manual reporting of extensive model details, especially in the era of precision medicine. Here, we present ReProMSig (Reproducible Prognosis Molecular Signature), a web-based integrative platform providing the analysis framework for development, validation and application of a multivariable prediction model for cancer prognosis, using clinicopathological features and/or molecular profiles. ReProMSig platform supports transparent reporting by presenting both methodology details and analysis results in a strictly structured reporting file, following the guideline checklist with minimal manual input needed. The generated reporting file can be published together with a developed prediction model, to allow thorough interrogation and external validation, as well as online application for prospective cases. We demonstrated the utilities of ReProMSig by development of prognostic molecular signatures for stage II and III colorectal cancer respectively, in comparison with a published signature reproduced by ReProMSig. Together, ReProMSig provides an integrated framework for development, evaluation and application of prognostic/predictive biomarkers for cancer in a more transparent and reproducible way, which would be a useful resource for health care professionals and biomedical researchers.<br /> (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1477-4054
- Volume :
- 24
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Briefings in bioinformatics
- Publication Type :
- Academic Journal
- Accession number :
- 37529934
- Full Text :
- https://doi.org/10.1093/bib/bbad267