Cite
Assessing the Feasibility of Using Artificial Intelligence-Segmented Dominant Intraprostatic Lesion for Focal Intraprostatic Boost With External Beam Radiation Therapy.
MLA
Tsui, James M. G., et al. “Assessing the Feasibility of Using Artificial Intelligence-Segmented Dominant Intraprostatic Lesion for Focal Intraprostatic Boost With External Beam Radiation Therapy.” International Journal of Radiation Oncology, Biology, Physics, vol. 118, no. 1, Jan. 2024, pp. 74–84. EBSCOhost, https://doi.org/10.1016/j.ijrobp.2023.07.029.
APA
Tsui, J. M. G., Kehayias, C. E., Leeman, J. E., Nguyen, P. L., Peng, L., Yang, D. D., Moningi, S., Martin, N., Orio, P. F., D’Amico, A. V., Bredfeldt, J. S., Lee, L. K., Guthier, C. V., & King, M. T. (2024). Assessing the Feasibility of Using Artificial Intelligence-Segmented Dominant Intraprostatic Lesion for Focal Intraprostatic Boost With External Beam Radiation Therapy. International Journal of Radiation Oncology, Biology, Physics, 118(1), 74–84. https://doi.org/10.1016/j.ijrobp.2023.07.029
Chicago
Tsui, James M G, Christopher E Kehayias, Jonathan E Leeman, Paul L Nguyen, Luke Peng, David D Yang, Shalini Moningi, et al. 2024. “Assessing the Feasibility of Using Artificial Intelligence-Segmented Dominant Intraprostatic Lesion for Focal Intraprostatic Boost With External Beam Radiation Therapy.” International Journal of Radiation Oncology, Biology, Physics 118 (1): 74–84. doi:10.1016/j.ijrobp.2023.07.029.