Back to Search Start Over

Protective intravenous BCG vaccination induces enhanced immune signaling in the airways.

Authors :
Peters JM
Irvine EB
Rosenberg JM
Wadsworth MH
Hughes TK
Sutton M
Nyquist SK
Bromley JD
Mondal R
Roederer M
Seder RA
Darrah PA
Alter G
Flynn JL
Shalek AK
Fortune SM
Bryson BD
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Jul 18. Date of Electronic Publication: 2023 Jul 18.
Publication Year :
2023

Abstract

Intradermal (ID) Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine in the world. However, ID-BCG fails to achieve the level of protection needed in adults to alter the course of the tuberculosis epidemic. Recent studies in non-human primates have demonstrated high levels of protection against Mycobacterium tuberculosis ( Mtb ) following intravenous (IV) administration of BCG. However, the protective immune features that emerge following IV BCG vaccination remain incompletely defined. Here we used single-cell RNA-sequencing (scRNAseq) to transcriptionally profile 157,114 unstimulated and purified protein derivative (PPD)-stimulated bronchoalveolar lavage (BAL) cells from 29 rhesus macaques immunized with BCG across routes of administration and doses to uncover cell composition-, gene expression-, and biological network-level signatures associated with IV BCG-mediated protection. Our analyses revealed that high-dose IV BCG drove an influx of polyfunctional T cells and macrophages into the airways. These macrophages exhibited a basal activation phenotype even in the absence of PPD-stimulation, defined in part by IFN and TNF-α signaling up to 6 months following BCG immunization. Furthermore, intercellular immune signaling pathways between key myeloid and T cell subsets were enhanced following PPD-stimulation in high-dose IV BCG-vaccinated macaques. High-dose IV BCG also engendered quantitatively and qualitatively stronger transcriptional responses to PPD-stimulation, with a robust Th1-Th17 transcriptional phenotype in T cells, and augmented transcriptional signatures of reactive oxygen species production, hypoxia, and IFN-γ response within alveolar macrophages. Collectively, this work supports that IV BCG immunization creates a unique cellular ecosystem in the airways, which primes and enables local myeloid cells to effectively clear Mtb upon challenge.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
37502895
Full Text :
https://doi.org/10.1101/2023.07.16.549208