Back to Search Start Over

Molecular dynamics study on the interfacial properties of mixtures of monomers of polyvinylpyrrolidone (PVP)-based battery binders on graphene and graphite surfaces.

Authors :
GutiƩrrez A
Aparicio S
Pekarovicova A
Wu Q
Atilhan M
Source :
The Journal of chemical physics [J Chem Phys] 2023 Jul 28; Vol. 159 (4).
Publication Year :
2023

Abstract

This study investigates the behavior of two different mixtures of monomers of polyvinylpyrrolidone (PVP)-based battery binders, polyvinylpyrrolidone:polyvinylidene difluoride (PVP:PVDF) and polyvinylpyrrolidone:polyacrylic acid (PVP:PAA), at graphene and graphite interfaces using classical molecular dynamics simulations. The aim is to identify the best performing monomer binder blend and carbon-based material for the design of battery-optimized energy devices. The PVP:PAA monomer binder blend and graphite are found to have the best interaction energies, densification upon adsorption, and more ordered structure. The adsorption of both monomer binder blends is strongly guided by the higher affinity of PVP and PAA monomeric molecules for the surfaces compared to PVDF. The structure of adsorbed layers of PVP:PVDF monomer binder blend on graphene and graphite develops more quickly than PVP:PAA, indicating faster kinetics. This study complements a previous density functional theory study recently reported by our group and contributes to a better understanding of the nanoscopic features of relevant interfacial regions involving mixtures of monomers of PVP-based battery binders and different carbon-based materials. The effect of a blend of commonly used monomer binders on carbon-based materials is essential for obtaining tightly bound anode and cathode active materials in lithium-ion batteries, which is crucial for designing battery-optimized energy devices.<br /> (© 2023 Author(s). Published under an exclusive license by AIP Publishing.)

Details

Language :
English
ISSN :
1089-7690
Volume :
159
Issue :
4
Database :
MEDLINE
Journal :
The Journal of chemical physics
Publication Type :
Academic Journal
Accession number :
37497821
Full Text :
https://doi.org/10.1063/5.0152997