Back to Search
Start Over
Effects of surface properties of GaN semiconductors on cell behavior.
- Source :
-
Heliyon [Heliyon] 2023 Jul 11; Vol. 9 (7), pp. e18150. Date of Electronic Publication: 2023 Jul 11 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- In recent years, semiconductors have aroused great interest in connecting, observing and influencing the behavior of biological elements, and it is possible to use semiconductor-cell compound interfaces to discover new signal transduction in the biological field. Among them, III-V nitride semiconductors, represented by gallium nitride (GaN), are used as substrates to form semiconductor-biology interfaces with cells, providing a platform for studying the effects of semiconductors on cell behavior. The interfaces between GaN substrate and cells play an important role in detecting and manipulating cell behaviors and provide a new opportunity for studying cell behavior and developing diagnostic systems. Hence, it is necessary to understand how the properties of the GaN substrate directly influence the behavior of biological tissues, and to create editable biological interfaces according to the needs. This paper reviews the synergism between GaN semiconductors and biological cells. The electrical properties, persistent photoconductivity (PPC), nanostructures, and chemical functionalization of GaN on the promotion of cell behaviors, such as growth, adhesion, differentiation, and signal transduction, are emphatically introduced. The purpose of this study is to provide guidance to explore the detection and regulation methods of cell behavior based on semiconductors and promote the application of them in the field of bioelectronics, such as biochips, biosensors, and implantable systems.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2023 Published by Elsevier Ltd.)
Details
- Language :
- English
- ISSN :
- 2405-8440
- Volume :
- 9
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Heliyon
- Publication Type :
- Academic Journal
- Accession number :
- 37496912
- Full Text :
- https://doi.org/10.1016/j.heliyon.2023.e18150