Back to Search Start Over

Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff.

Authors :
McIntyre JK
Spromberg J
Cameron J
Incardona JP
Davis JW
Scholz NL
Source :
The Science of the total environment [Sci Total Environ] 2023 Dec 01; Vol. 902, pp. 165759. Date of Electronic Publication: 2023 Jul 24.
Publication Year :
2023

Abstract

As the human population of western North America continues to expand, widespread patterns of urban growth pose increasingly existential threats to certain wild stocks of Pacific salmon and steelhead (Oncorhynchus sp.). Rainfall previously absorbed into the soils of forests and grasslands falls instead on pavement and other hardened surfaces. This creates stormwater runoff that carries toxic metals, oil, and many other contaminants into salmon-bearing habitats. These include freshwater streams where coho salmon (O. kisutch) spawn in gravel beds. Coho salmon embryos develop within a thick eggshell (chorion) for weeks to months before hatching as alevins and ultimately emerging from the gravel as fry. Untreated urban runoff is highly toxic to older coho salmon (freshwater-resident juveniles and adult spawners), but the vulnerability of the earliest life stages remains poorly understood. To address this uncertainty, we fertilized eggs and raised them under an episodic stormwater exposure regimen, using runoff collected from a high-traffic arterial roadway from 15 discrete storm events. We monitored survival and morphological development, as well as molecular markers for contaminant exposure and cardiovascular stress. We also evaluated the benefit of treating runoff with green infrastructure (bioretention filtration) on coho salmon health and survival. Untreated runoff caused subtle sublethal toxicity in pre-hatch embryos with no mortality, followed by high rates of mortality from exposure at hatch. Bioretention filtration removed most measured contaminants (bacteria, dissolved metals, and polycyclic aromatic hydrocarbons), and the treated effluent was considerably less toxic - notably preventing mortality at the alevin stage. Our findings indicate that untreated urban runoff poses an important threat to early life stage coho salmon, in terms of both acute and delayed-in-time mortality. Moreover, while inexpensive management strategies involving bioinfiltration are promising, future green infrastructure effectiveness research should emphasize sublethal metrics for contaminant exposure and adverse health outcomes in salmonids.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
902
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
37495136
Full Text :
https://doi.org/10.1016/j.scitotenv.2023.165759