Back to Search Start Over

Obligate endosymbiosis enables genome expansion during eukaryogenesis.

Authors :
von der Dunk SHA
Hogeweg P
Snel B
Source :
Communications biology [Commun Biol] 2023 Jul 25; Vol. 6 (1), pp. 777. Date of Electronic Publication: 2023 Jul 25.
Publication Year :
2023

Abstract

The endosymbiosis of an alpha-proteobacterium that gave rise to mitochondria was one of the key events in eukaryogenesis. One striking outcome of eukaryogenesis was a much more complex cell with a large genome. Despite the existence of many alternative hypotheses for this and other patterns potentially related to endosymbiosis, a constructive evolutionary model in which these hypotheses can be studied is still lacking. Here, we present a theoretical approach in which we focus on the consequences rather than the causes of mitochondrial endosymbiosis. Using a constructive evolutionary model of cell-cycle regulation, we find that genome expansion and genome size asymmetry arise from emergent host-symbiont cell-cycle coordination. We also find that holobionts with large host and small symbiont genomes perform best on long timescales and mimic the outcome of eukaryogenesis. By designing and studying a constructive evolutionary model of obligate endosymbiosis, we uncovered some of the forces that may drive the patterns observed in nature. Our results provide a theoretical foundation for patterns related to mitochondrial endosymbiosis, such as genome size asymmetry, and reveal evolutionary outcomes that have not been considered so far, such as cell-cycle coordination without direct communication.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
2399-3642
Volume :
6
Issue :
1
Database :
MEDLINE
Journal :
Communications biology
Publication Type :
Academic Journal
Accession number :
37491455
Full Text :
https://doi.org/10.1038/s42003-023-05153-x