Back to Search Start Over

A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling.

Authors :
Liu S
Sui C
Harbinson M
Pudlo M
Perera H
Zhang Z
Liu R
Ku Z
Islam MD
Liu Y
Wu R
Zhu Y
Genzer J
Khan SA
Hsu PC
Ryu JE
Source :
Nano letters [Nano Lett] 2023 Sep 13; Vol. 23 (17), pp. 7767-7774. Date of Electronic Publication: 2023 Jul 24.
Publication Year :
2023

Abstract

The deep space's coldness (∼4 K) provides a ubiquitous and inexhaustible thermodynamic resource to suppress the cooling energy consumption. However, it is nontrivial to achieve subambient radiative cooling during daytime under strong direct sunlight, which requires rational and delicate photonic design for simultaneous high solar reflectivity (>94%) and thermal emissivity. A great challenge arises when trying to meet such strict photonic microstructure requirements while maintaining manufacturing scalability. Herein, we demonstrate a rapid, low-cost, template-free roll-to-roll method to fabricate spike microstructured photonic nanocomposite coatings with Al <subscript>2</subscript> O <subscript>3</subscript> and TiO <subscript>2</subscript> nanoparticles embedded that possess 96.0% of solar reflectivity and 97.0% of thermal emissivity. When facing direct sunlight in the spring of Chicago (average 699 W/m <superscript>2</superscript> solar intensity), the coatings show a radiative cooling power of 39.1 W/m <superscript>2</superscript> . Combined with the coatings' superhydrophobic and contamination resistance merits, the potential 14.4% cooling energy-saving capability is numerically demonstrated across the United States.

Details

Language :
English
ISSN :
1530-6992
Volume :
23
Issue :
17
Database :
MEDLINE
Journal :
Nano letters
Publication Type :
Academic Journal
Accession number :
37487140
Full Text :
https://doi.org/10.1021/acs.nanolett.3c00111