Back to Search Start Over

Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes.

Authors :
Packer M
Wilcox CS
Testani JM
Source :
Circulation [Circulation] 2023 Jul 25; Vol. 148 (4), pp. 354-372. Date of Electronic Publication: 2023 Jul 24.
Publication Year :
2023

Abstract

SGLT2 (sodium-glucose cotransporter 2) inhibitors interfere with the reabsorption of glucose and sodium in the early proximal renal tubule, but the magnitude and duration of any ensuing natriuretic or diuretic effect are the result of an interplay between the degree of upregulation of SGLT2 and sodium-hydrogen exchanger 3, the extent to which downstream compensatory tubular mechanisms are activated, and (potentially) the volume set point in individual patients. A comprehensive review and synthesis of available studies reveals several renal response patterns with substantial variation across studies and clinical settings. However, the common observation is an absence of a large acute or chronic diuresis or natriuresis with these agents, either when given alone or combined with other diuretics. This limited response results from the fact that renal compensation to these drugs is rapid and nearly complete within a few days or weeks, preventing progressive volume losses. Nevertheless, the finding that fractional excretion of glucose and lithium (the latter being a marker of proximal sodium reabsorption) persists during long-term treatment with SGLT2 inhibitors indicates that pharmacological tolerance to the effects of these drugs at the level of the proximal tubule does not meaningfully occur. This persistent proximal tubular effect of SGLT2 inhibitors can be hypothesized to produce a durable improvement in the internal set point for volume homeostasis, which may become clinically important during times of fluid expansion. However, it is difficult to know whether a treatment-related change in the volume set point actually occurs or contributes to the effect of these drugs to reduce the risk of major heart failure events. SGLT2 inhibitors exert cardioprotective effects by a direct effect on cardiomyocytes that is independent of the presence of or binding to SGLT2 or the actions of these drugs on the proximal renal tubule. Nevertheless, changes in the volume set point mediated by SGLT2 inhibitors might potentially act cooperatively with the direct favorable molecular and cellular effects of these drugs on cardiomyocytes to mediate their benefits on the development and clinical course of heart failure.<br />Competing Interests: Disclosures M.P. reports consulting fees from 89Bio, Abbvie, Altimmune, Amgen, Ardelyx, AstraZeneca, Boehringer Ingelheim, Caladrius, Casana, CSL Behring, Cytokinetics, Lilly, Moderna, Novartis, Reata, Regeneron, Relypsa, and Salamandra. J.M.T. reports grants or personal fees from 3iveLabs, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Astra Zeneca, Novartis, Cardionomic, MagentaMed, Reprieve Inc, FIRE1, W.L. Gore, Sanofi, Sequana Medical, Otsuka, Abbott, Merck, Windtree Therapeutics, Lexicon, Precardia, Relypsa, Regeneron, BD, Edwards Life Sciences, and Lilly. In addition, J.M.T. has a patent for treatment of diuretic resistance issued to Yale University and Corvidia Therapeutics Inc, a patent for methods for measuring renalase issued to Yale University, and a patent for treatment of diuretic resistance pending with Reprieve Inc. The other author reports no conflicts.

Details

Language :
English
ISSN :
1524-4539
Volume :
148
Issue :
4
Database :
MEDLINE
Journal :
Circulation
Publication Type :
Academic Journal
Accession number :
37486998
Full Text :
https://doi.org/10.1161/CIRCULATIONAHA.123.064346