Back to Search Start Over

Pathway-dependent toxic interaction between polystyrene microbeads and methylmercury on the brackish water flea Diaphanosoma celebensis: Based on mercury bioaccumulation, cytotoxicity, and transcriptomic analysis.

Authors :
Yoo JW
Choi TJ
Park JS
Kim J
Han S
Kim CB
Lee YM
Source :
Journal of hazardous materials [J Hazard Mater] 2023 Oct 05; Vol. 459, pp. 132055. Date of Electronic Publication: 2023 Jul 13.
Publication Year :
2023

Abstract

Given their worldwide distribution and toxicity to aquatic organisms, methylmercury (MeHg) and microplastics (MP) are major pollutants in marine ecosystems. Although they commonly co-exist in the ocean, information on their toxicological interactions is limited. Therefore, to understand the toxicological interactions between MeHg and MP (6-μm polystyrene), we investigated the bioaccumulation of MeHg, its cytotoxicity, and transcriptomic modulation in the brackish water flea Diaphanosoma celebensis following single and combined exposure to MeHg and MP. After single exposure to MeHg for 48-h, D. celebensis showed high Hg accumulation (34.83 ± 0.40 μg/g <superscript>dw biota</superscript> ) and cytotoxicity, which was reduced upon co-exposure to MP. After transcriptomic analysis, 2, 253, and 159 differentially expressed genes were detected in the groups exposed to MP, MeHg, and MeHg+MP, respectively. Genes related to metabolic pathways and the immune system were significantly affected after MeHg exposure, but the effect of MeHg on these pathways was alleviated by MP co-exposure. However, MeHg and MP exhibited synergistic effects on the expression of gene related to DNA replication. These findings suggest that MP can reduce the toxicity of MeHg but that their toxicological interactions differ depending on the molecular pathway.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
459
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
37480609
Full Text :
https://doi.org/10.1016/j.jhazmat.2023.132055